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Abstract: Single and multicomponent fixed-bed adsorption of CO,, N,, and
CHj, on crystals of MOF-508b has been studied in this work. Adsorption equilib-
rium was measured at temperatures ranging from 303 to 343 K and partial pres-
sures up to 4.5 bar. MOF-508b is very selective for CO, and the loadings of CH,
and N, are practically temperature independent. The Langmuir isotherm model
provides a good representation of the equilibrium data. A dynamic model based
on the LDF approximation for the mass transfer has been used to describe with
good accuracy the adsorption kinetics of single, binary and ternary breakthrough
curves. It was found that the intra-crystalline diffusivity for CO; is one order of
magnitude faster than for CH4 and N,.
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INTRODUCTION

The quality of natural gas can vary widely according to the location of
the plant; nevertheless its composition can include up to 10% and 5%
of carbon dioxide (CO,) and nitrogen (N>), respectively. Natural gas con-
taining high levels of CO, and N, represent approximately one-third of
the U.S. natural gas resource (1). In many cases, this low quality gas can-
not be treated from the economic point of view with existing processing
technology, which means that huge amounts of fuel remain underground
(2). The continuous exhaustion of the producing wells, added to the fact
that unexploited reserves contain higher fractions of low quality gas will
stress the need for more efficient purifying processes able to meet
the quality standards specified by the major pipeline transmission and
distribution companies.

At the same time, a novel class of crystalline microporous adsorbents
has found great interest; the metal-organic frameworks (MOFs) have the
potential for making a significant impact in separation processes since
they offer the possibility to be tuned varying their pore size and function-
ality for specific applications. In a recent article (3), we have presented a
sorption equilibrium study for the adsorption of CO,, CHy, and N, in a
microporous MOF Zn(BDC)(4,4’-Bipy), s (MOF-508b) (4,4'-Bipy =4.,4'-
bipyridine) (4) with one-dimensional pores of about 4.0 x 4.0A (See
Fig. 1). It was referred to by Bastin et al. (3) that the significant difference
in the quadrupole moment of these molecules plays an important role
resulting in the preferential adsorption of CO,, relatively to CH4 and N,.

f
.
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Figure 1. One-dimensional micropores of about 4.0 x 4.0A in 4 MOF-508b.
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In this work, we will present the first example of mathematical mod-
eling for fixed-bed adsorption of gas mixtures in microporous MOFs.
Sorption equilibrium data of CO,, CHy, and N, in MOF-508b at 303,
323, and 343K and partial pressures up to 4.5 bar are reported for the
three gases. These data are fitted with a simple Langmuir isotherm
model, the results being presented in several figures along the article.
Single, binary, and ternary breakthrough curves were measured to pro-
vide required data to develop and validate a model based on the LDF
approximation for the mass transfer, which could be used in the
implementation of an adsorption processes for the purification of the
natural gas.

EXPERIMENTAL SECTION
Adsorbates and Adsorbent

The adsorbates under investigation were CO,, CH4 and N,. All the gases
containing purity higher than 99.5% were supplied by Air Liquide. Physi-
cal properties of these gases are summarized in Table 1.

The microporous MOF-508b Zn(BDC)(4,4'-Bipy)gs (1) (4,4-
Bipy =4,4'-bipyridine) was synthesized according to the procedure in
ref. (4).

Equipment and Procedure

Adsorption equilibrium data were obtained from breakthrough experi-
ments in a laboratorial unit existing at LSRE. Figure 2 shows a schematic
representation of the apparatus used to measure single and multicompo-
nent breakthrough curves. A detailed description of the apparatus set-up
is given in a previous work (3).

The experimental procedure follows: An adsorption column packed
with crystals of MOF-508b dispersed in glass wool was operated by intro-
ducing a constant flowrate of the adsorbate gas mixture with known

Table 1. Adsorbate properties (21,22)

Physical property CO, N, CH,
Kinetic diameter (A) 3.30 3.64 3.80
Dipole moment x 10'® (esu cm) 0 0 0
Quadrupole moment X 10%° (esu cm?) 4.30 1.52 0

Polarizability x 10?° (cm®) 31.0 17.6 26.0
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Figure 2. Schematic diagram of the apparatus used to measure adsorption
equilibrium for mono- and multi-component systems: (BPR) back pressure regu-
lator; (Sample collector) 10 sample-loops; (CHR) chromatographic silica gel col-
umn; (MOF) packed column containing MOF; (EPC) electronic pressure
controller; (MFC) mass flow controller; (PC) Computer; (TCD) thermal conduc-
tivity detector; (Vy, V») valves; (V3;, V3,) 3-ways valves; (V6) 6-ways crossover

valve; (0,0,0,®,®,®) streams.

composition in a helium stream at a fixed total pressure. The analysis of
the system consists in measuring continuously the mass flow at the outlet
of the packed bed with a thermal conductivity detector (TCD). In multi-
component experiments, samples are collected from the column output
during the breakthrough curve for further analysis in a silica-gel chroma-
tographic column.

Prior to each run, the packed bed is regenerated for at least 2 hr at
423 K under helium flow up to 50 ml/min. The next experiment can start
as soon as the TCD signal is stable again. In our experimental procedure
first experiments were not taking into account. The reversibility is evalu-
ated by repeating some experiments occasionally and verifying the
amount adsorbed which generally agree well. In this work, two columns
with different internal diameters were used for single and multicompo-
nent experiments. The characteristics of these adsorption units are
reported in Table 2.
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Table 2. Fixed-bed parameters and adsorbent properties used in the modelling of
the sorption experiments of N,, CH; and CO, in MOF-508b

Single Multicomponent
Fixed bed parameters experiments experiments
Bed diameter, d [m] 0.0046 0.0077
Bed length, L [m] 0.10 0.10
Bed porosity, &, [—] 0.74 0.68
Bulk density, py [kg/m’] 390.5 470.7
Mass of adsorbent, W[g] 0.649 2.192
Particle diameter, dj, [um] 25-100
Particle density, p, [kg/m’] 1492

MODELING ADSORPTION EQUILIBRIUM
Pure Component Isotherms

From the engineering point of view, it is important to have a good ana-
lytical description of the equilibrium data in order to reduce experimen-
tation. The simplest theoretical model for monolayer adsorption was
proposed by Langmuir (5) and it can be represented by the following
equation:

b(T) -p

T i £ I ———
a(p,T)=q T3 B(T)

(1)
where ¢ is the amount adsorbed, p is the partial pressure of the adsorbate,
b and g, are the adsorption affinity constant and the saturation loading,
respectively. This model is based on the assumptions that the surface of
the adsorbent is energetically homogeneous and the adsorbate occupies
one active site when it adsorbs which is reasonable when the adsorbate
molecule is small. Adsorption affinity constant, b, is assumed to vary
with temperature according to the following equation:

b=by- e(#) (2)

where by is the frequency factor of the affinity constant, AH is the heat of
sorption, R is the universal gas constant and 7 is the temperature.

The parameters of the Langmuir isotherm for the three gases on
MOF-508b are determined by numerical procedure. The mean absolute
deviations, Ag, between the predicted, g, and the experimental, Gexps
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values are calculated with:

N
Mg =3 (eps — 4 3)
i=1

being N the total number of measurements.

Multicomponent Adsorption Isotherms

Using the parameters given by the single component adsorption equilib-
rium fitting, the mixture sorption data can be predicted by an extended
Langmuir isotherm model. Accordingly, the amount adsorbed of compo-
nent i, ¢;, in a mixture is given by:

. bi (T) - pi
L+ 370 b (T) - pr

where 7 is the number of components present in the mixture.

4P, T) = qm,i (4)

Modeling

The adsorption system is a column packed with crystals of MOF-508b
through which an inert gas flows in steady-state. At time zero an adsorb-
ate flow of known composition and an inert are introduced at the bottom
of column. Several simplifications were introduced to reduce the compu-
tational time, thus the following assumptions are made:

The gas phase behaves as an ideal gas mixture;

The pressure drop through the bed is negligible;

The flow pattern is described by the axially dispersed plug flow model;
The main resistances to mass transfer for adsorbable species can be
combined in a lumped mass transfer coefficient;

5. The column is isothermal.

v

According to these assumptions, the equations used to simulate sin-
gle and multicomponent breakthrough curves are summarized in Table 3.

The Linear Driving Force (LDF) model used in this work has been
tested successfully in previous studies (6,7) to simulate breakthrough
curves of alkanes in zeolitic materials. The set of equations was solved
numerically using the orthogonal collocation method (8). The resulting
system was solved using a fifth-order Runge-Kutta code in conjunction
with a Gauss elimination (algebraic equations). Twelve collocation points
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Table 3. Dynamic mathematical model equations for fixed bed adsorption

Equations
Mass balance to s;,DLa% (C%) :%ﬁ“)—ksb@ﬁ- (1 —sb)pa% 5)
sorbate species
Boundary conditions: z=0,t>0 szLC‘?;_“ =Fy, — Fryy (5a)
z=Lit>0 2:=0 (5b)
. , N .
Overall mass balance 9 1 698 + ;(1 — &) p, i = 0 (6)
Boundary condition z=0,1>0 F=1F (6a)
Mass transfer rate % =k(qi — ) @)
Axial dispersion (Wakao D; = f_—?Dm + e (8)

and Funazkri, 1978) (9)

gave a good accuracy for all experiments. The parameters used to predict
the experimental data are summarized in Table 1.

Estimation of Model Parameters for Experimental
Breakthrough Curves

In order to fit the experimental breakthrough curves, numerical values
for both axial dispersion and lumped mass transfer coefficients are
required. The axial dispersion coefficients for each of the runs were esti-
mated from the correlation given by Wakao and Funazkri (9) (see
Table 3). This correlation follows from experiments in the low Reynolds
number regime (Re <2) with sufficiently rapid adsorption within the
particle. In the present study, small crystals (25 um <d, <100 um) in a
non-pelletized form were used resulting in a fast kinetic, moreover, the
Reynolds number from the different runs was in the range 0.1 < Re < 0.6.
Therefore, the Wakao correlation was used to predict the axial
dispersion. This correlation has been already used in the modeling of
pressure swing adsorption separation of mixtures CHy, CO, and N, (10).

The lumped mass transfer coefficients for the experimental runs were
estimated from the following correlation (11):

-1
d,q d2
k= 1o P 9
<6kfco + 60D, ©)
which consider micropore and film resistances to mass transfer. The
macropore diffusion mechanisms were neglected since we are dealing
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with non-binded microporous crystals dispersed on an inert glass wool.
The contribution of the external film for the mass transport resistance
was taken into account despite the fact that its importance is two orders
of magnitude lower than the micropore mass transport resistance. An
average crystal radius of 31 um was considered. The values for the ratio
qo/co were obtained from the equilibrium model. The external mass
transfer coefficient, k;, was given by (12):

u 0.765 0.365
ky = 10
f Sc2/3 <(Re 8b)0.82 + (Re 8b)0.386> (10)

where u is the interstitial velocity, Re the particle Reynolds number, both
calculated with the feed flow rate and Sc is the Schmidt number. Mole-
cular diffusivity was estimated from the Chapman-Enskog equation.

The micropore diffusivity, D, in Equation (9) was used as a tempera-
ture dependent fitting parameter for the simulated pure component
breakthrough curves, since is the only unknown term of the mathematical
model. The value of D, follows the expression:

D, = Dyexp(—E,/RT) (11)

where, Dy is the pre-exponential factor and FE, is the diffusional acti-
vation energy. The micropore diffusivity fitted for single component
breakthrough curves was also used to predict the binary and ternary
experiments.

RESULTS AND DISCUSSION
Pure Component Isotherms

The first step in the characterization of an adsorbent for a specific sep-
aration process is the measurement of the adsorption equilibrium of
pure components. Pure component isotherms were determined from
breakthrough experiments performed with single components diluted
in helium used as the inert carrier gas. The loading was determined
by numerical integration of the breakthrough data following the pro-
cedure describe in previous works (6). The experiments were performed
at temperatures of 303K, 323K, and 343K and partial pressures
between 0.1 and 4.5bar. Complete information of the experimental
fixed-bed runs performed, including partial pressure, temperature, flow-
rate, mass of adsorbent used in the column, and the amount adsorbed
for each run by the integration of the molar flowrate histories, is shown
in Table 4.
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Figure 3 shows the adsorption equilibrium isotherms plotted in terms
of the loading in mmol/gads as a function of the partial pressure. It can
be seen from the figure that the isotherms are Type I in IUPAC classi-
fication. The saturation was not reached because of operating pressure
limitations in our setup. The equilibrium data shows that CO, is much
more adsorbed than CH4 and N,. This difference is considerably higher
at 303K but it decrease significantly when the temperature is increased.
The one-dimensional 4.0 x 4.0 A channels in MOF-508b seems large

Loading, g (mmol/g_,) Loading, g (mmol/g_, )

Loading, g (mmol/g_,)

(@) 303K

(b) 323K

(c) 343K —— A co2

---- O CH4
—— 0 N2

T T T T T T T T T 1
1 2 3 4 5
Partial pressure, p (bar)

Figure 3. Pure component adsorption equilibrium isotherm of CO,, CH4 and N,
at (a) 303K, (b) 323K and (c) 343K on 4 MOF-508b. The continuous lines rep-
resent the fitting with the Langmuir model. Isotherm model parameters in Table 5.
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enough to neglect shape selectivity effects when compared with the
kinetics diameters of the gas molecules. Moreover, the van der Waals
interaction surfaces of the three gases are too much close to being the rea-
son for such difference. However, the large quadrupolar moment and
polarizability of CO, are predominantly the cause of the difference in
adsorption behavior (Table 1). The quadrupole moment produces a
strong attraction to the adsorbent surface resulting in a higher uptake
(13). The high level of polarizability of CO, and CH4 can create a
momentary shift in its neutral electrostatic field when the molecule is
close to the metallic sites of the structure. Nevertheless, this attraction
force is much weaker than the quadrupole moment. The nitrogen mol-
ecule also exhibits a quadrupolar moment but its magnitude is much
lower than the one for COs,.

Another interesting feature that can be seen in Fig. 3 is the absence of
steps in all the adsorption isotherms and for the entire range of partial
pressure and temperature studied in this work. Such effect is often due
to structural transformations which can include for example ““breathing”
and scissoring mechanisms (14-16). These transformations can make
impracticable the utilization of MOFs in industrial processes because
the pellets can crumble if the framework undergoes a cell volume change.
A consequence of such phenomena could be a sharp increasing of the
pressure drop in the column, which can result in serious damages in
the equipment.

The fitted pure component isotherms with the Langmuir model are
the lines in Fig. 3. Langmuir parameters obtained from numerical
optimization, as well as the mean absolute deviations between experi-
mental data and predicted values are shown in Table 5. The saturation
loading for the three components were kept constant during the opti-
mization procedure; such restriction allows giving thermodynamic con-
sistency to the isotherm model (17). The fitted value for the saturation
capacity, ¢ =18.34 mmol/g, is similar to the ones found in MOF mate-
rials with larger pores (18). The heat of adsorption fitted by numerical
procedure for CO, (18.8kJ/mol) is 5 times higher than the ones for
CH,; and N, (~3.7kJ/mol). However, these values are lower than
those found in porous MOFs (15). This enthalpy difference can be
related to endothermic processes which involve structural transforma-
tions caused by the flexibility of MOF-508b. Such endothermic frame-
work transformation, to some extent, compensates the exothermic
adsorption behaviour as rationalized in MIL-53 (15), leading to the
low heats of sorption in MOF-508b. It is clear from Fig. 3 that the
Langmuir model is reasonable in predicting isotherm sorption behavior
of pure CO,, CHy4, and N, in the range of temperatures and partial
pressures studied.
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Binary Adsorption Isotherms

Figures 4(a—c) and 4(d-f) show the binary adsorption isotherms for an
equimolar mixtures of CO,/N, and CO,/CHy, respectively. The experi-
ments were performed at 303K, 323K, and 343K and partial pressure
up to 2bar. The experimental conditions for binary experiments as well
as the amount adsorbed are given in Table 6.

In both equimolar mixtures, Fig. 4 shows a large difference relatively
to the loading of CO, which significantly decreases as the temperature
increases. Also, at the same time that the loading of CO, decreases, the
amounts adsorbed of CH; and N, remain practically unchanged

I
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Figure 4. Binary adsorption equilibrium isotherms for equimolar mixtures of
(a—<) N,—CO, and (d-f) CH4—CO, on 4 MOF-508b at 303K, 323K and
343 K. The continuous lines represent the prediction of the Langmuir model.
Isotherm model parameters in Table 5.
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Table 5. Langmuir model parameters and deviations between model and
experiments

Parameter Unit N, CH,4 CO,

qm (mmol/g,qs) 18.34 18.34 18.34

b (bar™) 6.37x 1073 6.73x 1073 5.64x 1073
b (303K) (bar™h 0.027 0.029 0.098

b (323K) (bar™") 0.025 0.026 0.062

b (343K) (bar™ ") 0.023 0.024 0.041

—AH (kJ /mol) 3.70 3.65 18.80

Ag (mmol/g,qs) 0.098 0.084 0.098

strengthening the idea that quadrupole moment of CO, plays an impor-
tant role in this separation.

We also note that the extended Langmuir model prediction repre-
sented by the lines in Fig. 4 gives a proper description of the binary
adsorption data.

Ternary Adsorption Isotherms

Figure 5(a—c) shows the ternary adsorption isotherms for an equimolar
mixture CO,/CH4/N,. The experiments were performed at 303K,
323K, and 343K and partial pressure up to 1.4 bar.

As shown in Fig. 5, the adsorption behavior does not seem to be
affected by the simultaneous presence of the tree gases in the adsorbent
structure when compared with the binary experiments. The adsorp-
tion capacities of MOF-508b decrease in the following order
CO, > CH4 > N,. The CO, uptake is significantly dependent on the tem-
perature decreasing as the temperature increases. Conversely, adsorption
capacities for CH4 and N, in MOF-508b are almost independent of the
temperature. Such difference in temperature dependence of the adsorp-
tion behaviors might be specifically useful to optimize the operating con-
ditions for the CO, removal from natural gas.

Once more, the experimental sorption isotherms are predicted by the
Langmuir model.

Modeling of the Single Breakthrough Experiments

The comparison between experimental and theoretical pure component
breakthrough curves is shown in Fig. 6 for CO,, CHy, and N, in terms
of the adsorbate mol fraction in the gas phase at the outlet of the column
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Figure 5. Ternary adsorption equilibrium isotherms for an equimolar mixture
of CO,/CH4/N; on 4 MOF-508b at a) 303K, b) 323K and c) 343 K. The lines
represent the prediction of the Langmuir model. Isotherm model parameters in

Table 5.
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Figure 6. Pure component breakthrough curves of CO,, CH, and N, in 4 MOF-
508b. Experimental conditions are in Table 4. Continuous lines are obtained with
the mathematical model. N,, run 5; CHy, run 23; CO,, runs 40, 41, 46 and 52.

as a function of the time. The experimental conditions are detailed in
Table 4. The sharpness of the breakthrough curves indicates a fast
kinetics which is good for the development of separation processes based
on equilibrium properties.

The experimental breakthrough curve was matched by fitting the
micropore diffusion parameter, D.. The estimated diffusional parameters,
listed in Table 4, were considered to be independent of the loading since
the experimental conditions still far from the saturation region. The
micropore diffusion within the channels of MOF-508b for CO, (D,
(303K)=5x 10*10m2/s) is one order of magnitude faster than for
CH4 and N». Such results can be explained by the fact that the kinetic
diameter of CH4 and N, is greater than the one of CO, (see Table 1).
In a general way, the diffusivity of the molecules studied in this work
is lower than the ones reported in the literature for MFI (19,20); for
instance, Krishna and Baten (20) have determined by molecular dynamic
simulation diffusivity values ranging from 10~ to IO*sz/s for CO,,
CHy and N, in MFI at T=300 K. This difference can also be explained
by the relation between the molecular diameter and the pore dimension
since the channels of MFI (5.1 x 5.6 A) are larger than the ones of
MOF-508b (4.0 x 4.0 A), consequently the diffusion can be faster in the
first case. The temperature dependence of the intra-crystalline diffusion
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in MOF-508b was found to be very low for the three molecules as it can
be seen from the diffusional activation energy, E,, listed in Table 4. Data
reported in the literature for micropore diffusion of CO,, CH4 and N, in
zeolite 4 A at 303 K show values in the order 10~'?m?/s with activation
energies for diffusion around 20kJ/mol for the three molecules (23).
Taking into account the similarity of the pore dimension of both adsor-
bents, and the high diffusivity found in MOF-508b, the diffusion mech-
anism in this metal-organic framework can be characterized as ‘“‘fast
diffusion” and this can explain the low activation energy found.

From the practical point of view, this approach for the estimation of
the diffusional parameters seems fair considering the explanation given in
a previous section; nevertheless, results should be read with caution since
they were obtained form the match of breakthrough curves.

Figure 6 shows clearly that the dynamic mathematical model
reproduces very well the experimental data for the temperature and feed
concentration range studied in this work.

Modeling of the Binary Breakthrough Experiments for
Equimolar Mixtures CO,/CH,4 and CO,/N,

In practice we wish to separate the CO, molecules from CH4 and N, in a
fixed bed. In this section we give an overview of the typical multicompo-
nent breakthrough curves obtained. In Fig. 7, the breakthrough curves of
a binary equimolar mixture of CO,/CHy are shown for the temperatures
303K, 323K, and 343K and total adsorbate pressure around 2 bar. We
plot the breakthrough curves in terms of the normalized mass flow of the
adsorptive species F'/F's, as a function of time. Interesting to note that
for T=303 K, methane appears at the outlet of the column at a time
of approximately 40 sec compared to a time value of 100sec for CO,.
This time difference is suitable for a separation in a fixed bed. For the
mixture CO,/N, the separation degree is quite similar as can be seen
in Fig. 8. This result allows us to conclude that the separation
degree observed between these isomers can lead to the development of
a separation process by adsorption.

Figures 7 and 8 also shows some dispersion in the shape of break-
through curves and this is due to a combined effect of mass transfer
resistance, and axial dispersion. The dynamic model parameters of the
LDF-based mathematical model can be seen in Table 6. The value k
can be considered as lumped parameters. It can be concluded from the
multicomponent breakthrough experiments that this simple model
does a good job for the prediction of both dispersion and overshoot
phenomena.
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Figure 7. Effect of temperature on binary breakthrough curves for equimolar
mixtures of CHy;—CO, at @) T=303K, b) T=323K and ¢) T=343K at a total
mixture pressure around 2 bar. Total system pressure was fixed at 5bar. Experi-
mental conditions and model parameters in Table 6. Lines represent the dynamic
mathematical model simulation and points are experimental data.

Modeling of the Ternary Breakthrough Experiments for
Equimolar Mixtures CO,/CH4/N,

The breakthrough curves in Fig. 9 show that N, leaves the bed slightly
before CH4. The last component to go out, CO,, is clearly the most
strongly adsorbed component which explains the difference in the
amount adsorbed of CO, relatively to the other components, already
observed in the ternary adsorption equilibrium isotherms shown in Fig. 5.

The agreement between experimental data and the mathematical
model is reasonably good, and this is remarkably taken into con-
sideration that we are using a simple LDF model in a simulation of a
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Figure 8. Effect of temperature on binary breakthrough curves for equimolar
mixtures of N,—CO» at a) T=303K, ») T=323K and ¢) T=343K at a total
mixture pressure around 2 bar. Total system pressure was fixed at 5bar. Experi-
mental conditions and model parameters in Table 6. Lines represent the dynamic
mathematical model simulation and points are experimental data.

nonlinear multicomponent system of three adsorbable species in a
complex metal-organic structure.

The separation potential of an equimolar mixture can be described in
terms of the sorption selectivity, S, defined on a molar basis by S =¢;/¢>,
where compound 1 is more adsorbed. Figure 10 shows the effect of tem-
perature and mixture pressure on the sorption selectivity a) Scos/crs and
b) Scoz/n2 for a ternary equimolar mixture CO,/CH,/N, on MOF-508b.
In both cases, the drop in temperature favor the selectivity. For the three
temperatures, we can see that the selectivity is higher for the mixture
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Figure 9. Effect of partial pressure on ternary breakthrough curves for equimolar
mixtures of N,—CH4—CO, at T=303K and a) p,..x=2.0bar, b) p,...=3.0bar
and ¢) pmix =4.0 bar. Total system pressure was fixed at 5bar. Experimental con-
ditions and model parameters in Table 6. Lines represent the dynamic mathematical
model simulation and points are experimental data.

CO,/N,; also the mixture pressure does not seems to have significant
influence on the sorption selectivity, except at 303 K where a slight
increase is observed.

Note that the predictions of the extended Langmuir model (lines in
Fig. 10) give pressure-independent values for the selectivities Scos/cha
and Scoz/n2, indicating the absence of competition for the active sites
between the three types of gas molecules studied. However, the slight
increase previously mentioned for the experimental data at 303 K requires
some experiments at mixture pressure higher than 4bar in order to
check if the cause of this phenomenon is or not related to an experimental
problem.



09: 09 25 January 2011

Downl oaded At:

Single and Multicomponent in a Metal-Organic Framework 3517

8-
(a) Ternary mixture CO, /CH,
T 7
%)
2 %7
=
5 51
2
3 4 0
c | o I O
2 34
g
(?) g G g 5
1 T T T T 1
0 1 2 3 4 5
8
(b) Ternary mixture CO, /N,
7 74
2 6
%‘ o
3 54 0
@9
& 4- o
C | e
g
| O .......... O ....... O ............
B 2
1 T T T T 1
0 1 2 3 4 5

Mixture partial pressure, p . (bar)

Figure 10. Temperature-dependent sorption selectivity for (a) CO,/CHy and (b)
CO,/N, in equimolar ternary CO,/CH,4/N, mixtures, as function of the mixture
partial pressure ((J, T=303K; O, T=323K; A, T=2343K). Points are experi-
mental data and lines represent the sorption selectivity predicted by the Langmuir
model.

CONCLUSIONS

The adsorption and separation of CO,, CHy, and N, on MOF-508b by
fixed bed process have been studied. Single and multicomponent equilib-
rium data have been obtained through experimental breakthrough curves
in a temperature range comprised between 303 K and 343 K. The gas par-
tial pressure has been increased up to 4.5 bar without reaching the satu-
ration stage.
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The single isotherm data was fitted with good accuracy by a simple
Langmuir model. The Langmuir model parameters were used to predict
the multicomponent equilibrium giving a well description of the adsorp-
tion behavior of the gas mixture on MOF-508b. A model based on the
LDF approximation which has taken into account the isotherm model
predictions was able to described both mono- and multicomponent
experimental breakthrough curves. The micropore diffusivity estimated
by the dynamic mathematical model gives values of the order of
10*10m2/s for CO, and 107! mz/s for CH4 and N,.

The experiments performed allow concluding that MOF-508b is a
highly selective material for CO, separation at room temperature. If
the rise in temperature causes a sharp decrease in CO, affinity, on the
other hand the change in partial pressure seems to not have a strong
influence. The low amount adsorbed of CH4 and N, are practically tem-
perature independent offering a large range of operating conditions
favorable to the CO, removal from natural gas. The sharpness in break-
through curves indicates a fast kinetic which contribute to the short
regeneration time of MOF-508b.

These results show that MOF-508b can be a suitable adsorbent for
the development of processes for CO, separation from natural gas.
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NOTATION

b affinity constant (bar™")

by frequency factor of the affinity constant (bar™')

o molar gas concentration at the inlet of the fixed bed (mol/m?)

¢ molar concentration of sorbate species i in the bulk gas phase
(mol/m?)

C total molar gas concentration in bulk gas phase (mol/m?)
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d column diameter (m)

d, particle diameter (m)

D, micropore diffusivity (m?/s)

Dy axial dispersion coefficient in fixed bed (mz/ s)

D,, molecular diffusivity (m? /s)

Dy pre-exponential factor (m?/s)

E, diffusional activation energy (kJ/mol)

F molar rate of adsorptive species at the column outlet (mol/s)
F/ molar rate of the adsorptive species in the feed (mol/s)
F total molar flux (mol/ (m.s))

Fr total molar flux of feed (mol/(m?.s))

AH adsorption enthalpy (J/mol)

k mass transfer coefficient (s ™)

ky external film mass transfer coefficient (m/s)

L column length (m)

)4 partial pressure (bar)

P total system pressure (bar)

q adsorbed concentration of sorbate in the adsorbent particle

(mmol/g)

g average adsorbed concentration of sorbate in adsorbent particle
(mmol/g)

qm saturation loading capacity of sorbate in the adsorbent (mmol/g)

R gas constant (kJ/mol/K)

Re Reynolds number (—)

Sc Schmidt number (—)

t time (s)

T temperature (K)

u interstitial velocity in packed bed (m/s)

w mass of adsorbent in the column (kg)

Va mole fraction of the sorbate in the bulk phase (—)

Var mole fraction of the sorbate at the inlet of the column (—)

z distance coordinate along fixed bed (m)

Greek Letters

Pa apparent density (kg/m?)
b bulk density (kg/m?)

&b bulk porosity (—)
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